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The problems of accelerating macroparticles with sizes of several millimeters up to 
velocities of I06-i0 a cm/sec are currently of great interest for the physics of high-tempera- 
ture plasma [i]. Thus, one of the most promising methods for replenishing a thermonuclear 
reactor with fuel is injecting tablets of thermonuclear fuel into the reaction zone w~th the 
required rate. One possible method for obtaining a thermonuclear reactor with inertial con- 
finement is pulsed heating accompanying high-speed collision of macroparticles with a target, 
when the particle or target are prepared from thermonuclear material. 

Estimates in [i] show that a possible method for accelerating a conducting or supercon- 
ducting composite granule of deuterium is inductive acceleration in a magnetic field with the 
interaction of this field with the dipole magnetic moment induced in the granule. An ele- 
mentary estimate of the limiting velocity for a spherical diamagnetic particle is given in 
[i, 2]. 

In this paper, we examine the problems of capturing and entraining a stationary conduct- 
ing body, shaped like an annular loop and moving in a magnetic field, within the framework of 
the theory of electrical circuits for moving loops in application to the problem of accelerat- 
ing macroparticles. Investigations of simple working models reveal the important character- 
istics of the process by which a conductor is captured by the magnetic-field wave. The quan- 
titative estimates obtained can be used to analyze the acceleration of a perfectly conducting 
body or a body with finite electrical conductivity, whose size in the direction of diffusion 
of the magnetic field is less than the penetration depth of the field (thin conductor). 

Formulation of the Problem. Regarding the inductor system, which creates the moving 
magnetic-field wave, as ideally distributed, we shall assume that a current zone moves along 
its coils. When the supply circuits of the coils are independent, this current zone in some 
approximation can be viewed as an electrically conducting loop (Fig. i) moving with constant 
velocity v~ = const and initial current i~o, which encounters a loop 2 at rest, i.e., the body 
being accelerated. As the loops approach, due the interaction of the magnetic field of the 
moving loop and the magnetic dipole moment induced in loop 2, the latter is dragged along~ 
We shall describe the magnetic coupling between the loops by the coupling coefficient k(x) = 
M/~, where x is the distance between the loops, M(x) is the mutual inductance, while LI 
and L= are the inductance of the first and second loops, respectively. For k § i, the loops 
approach in such a way that the magnetic leakage fluxes between them approach zero. 

i. We shall first examine the case when the active resistances of both loops are negligi- 
bly small. Starting from the constancy of the flux linkages, penetrating the loops, we ob- 
tain ~ = L1il + Mi2 = L1i~o, ~2 = L=i= + Mi~ = O, from where i: = i~o/[l -- k=(x)]. Then, 
the magnetic energy of the system of two loops equals W~= = W~o/[! -- k=(x)], where W1o = 
L:i~o/2 is the initial magnetic energy of the first loop. Let us write out, using the ex- 
pression for W12, the equation of energy balance for the two loops in a system of coordin- 
ates fixed to the moving loop: 

n~2~Ji/- v- Vv'~o ~ W~o/1 k- = t ~ . ~ v - , , .  - . . . .  (~0), (i. i) 

where v = v2 --v~ is the velocity of the second loop relative to that of the first; m2 is the 
mass of the second loop. 

It is evident that for small values of W1o loop 2 can pass through loop 1 (we use a sys- 
tem of coordinates fixed to the first loop), while for large values of W~o loop 2 can be re- 
flected from loop i. The second case (the case of total entrainment of the second loop) is 
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characterized by the fact that at a well-defined time, preceding reflection and corresponding 
to a well-defined value of k(x), the loops will be stationary relative to one another (v = 0). 
In this case, we obtain from (i.i) 

m 2,.~/2 : :  }V~0 k:~ (x) . ( l  - -  k ~ (x)). ( 1 ,2  ) 

The right side of expression (1.2) assumes its maximum value for k(x) = ~ax' i.e., at 
the time of exact coincidence of the loops. The condition for total entrainment of the sec- 
ond loop can be written in the form 

, 1 ~ 2  2 , -  w~0kL~/(~ - ~,,~,,~) > ,w 'Jz .  (1.3) 

i t  f o l l o w s  f rom e q u a l i t y  ( l , l )  t h a t  i n  t he  case o f  an e l a s t i c  " c o l l i s i o n "  o f  the  l o o p s ,  
when condition (1.3) is satisfied, loop 2 by the end of the interaction will be moving away 
from loop i with velocity vx, In addition, its final velocity in a stationary system of 
coordinates is v~ =,iv:. Thus, if it is necessary to accelerate a conducting loop with mass 
m= up to velocity v= in the case of negligibly small dissipative processes, the magnetic field 
of the inductor system must move with velocity v~ = 0.5 v* = and have magnetic energy that sat- 
isfies, according to (1.3), the condition 

i '~ ,2  

To e s t i m a t e  the  magn i tude  of  kmax, in  many c a s e s ,  i t  i s  p o s s i b l e  to  use  the  c a l c u l a t i o n s  
of  kma x f o r  two c o n c e n t r i c  i n f i n i t e l y  t h i n  s o l e n o i d s  (F ig .  2) .  For example,  f o r  kmax = 0 . 9 ,  

2 Wxo~- 0.06m=v=/2.  

2. Let us examine the entrainment of a conducting loop 2 with an active resistance R2 
for the preceding assumptions concerning the inductor system. Assume that loop 2 represents 
a loop moving with velocity vx = const and with initial current and active resistance Rx = 0. 
In this case, the electromechanical transient process in a system of coordinates fixed in the 
first loop is described by the following system of nonlinear differential equations, written 
for dimensionless quantities: 

d~ i Lf ~,~ d~ ~ el ,oL = dk (;) ] 
d-P = ~-k--~) dJ --~ ~;J' 

--=Vd7 ~, [ I - /~ (~ )g ] . - -d ;  ' % = t -  k(~)~=, 

d~=7', LIT=o =~  ;Iv=~ : l ,  ~Iv:o -~ ,  

(2.1) 

% 
where x = x/b~(b is the initial z in gener@l, arbitrarily chosen distance between the loops); 
ix = i,/ixo; i2 = /Lii~/Lzi~o; v = v/vx; t = vxt/b; 0 = Rab/L=v is the relative resistance 
of the second loop; and ~ = miv~/Lzi~o is the relative mass of the second loop. The follow- 
ing approximate dependence of the coupling coefficient on the distance between loops was 

used: k(x) = kma x exp(--31x]). 
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The system (2~i) was integrated numerically using the Runge--Kutta method~ The distance 
between the loops x(t) and the velocity of the second loop v2 = 1 + v, calculated in the sta- 
tionary system of coordinates, as a function of time are presented in Fig. 3 (p = 1 and kma x = 
0.95). For p = 0, the transfer of a mechanical momentum via the electromagnetic field from 
the moving first loop to the initially motionless second loop is elastic. When the conditions 
for entrainment (1.3) are satisfied, the first loop does not overtake the second loop~ fin- 
ally acquiring as a result of the interaction a velocity that is twice its initial value. As 
the relative resistance of the second loop p increases, momentum exchange becomes inelastic: 

the final velocity of the second loop decreases. Figure 4 (kma x = 0.95) shows the effect of 
the relative mass ~ and resistance p of the second loop on the magnitude of its final veloc- , 
ity v2. The final velocity is understood to mean the velocity of the second loop in the sta- 
tionary system of coordinates upon completion of its interaction with the first loop, when 
k + 0. For p = 0, the loop being accelerated can either be accelerated to a velocity v~ = 
2vi (p < p,), or it can arrive at a state of rest (u > p,). Starting from the condition 
(1.2), we find the critical values of the mass ~, + k~ax/(l -- k~ax). In the presence of Joule 
dissipation, the magnitude of the critical mass of the second loop decreases. In this case, 
for ~ > ~,, the first loop overtakes the second loop, whose velocity no longer decreases to 
zero at the end, as in the case p = 0, and the second loop continues to move with some veloc- 
ity v= < vl, partially entrained by the magnetic field of the first loop (Fig. 3, o = 3). 
The partial entrainment of the second loop can be explained by the fact that after the time 
that the contours coincide, the current in the second loop changes sign, which is not ob- 

served for p = 0. This is evident from Fig. 5, where the time dependences of the currents 
in the loops during their interaction are illustrated (~ = I, kma x = 0.95). 

In conclusion, we note the following. 

i. To accelerate a perfectly conducting body to a given velocity with the help of a 
traveling magnetic wave, the velocity of the wave must be equal to one-half the velocity of 
the body and the condition (1.4) for the body to be captured by the wave must be satisfied. 

2. The condition for capture of a perfectly conducting body by a traveling magnetic 
field is the requirement that the energy in the magnetic field carried by the wave, taking 
into account the coupling coefficient with the body being accelerated, be sufficient for im- 
parting to the body a kinetic energy corresponding to the motion of a body with the velocity 
of the wave. 

3. The transfer of mechanical momentum from the traveling magnetic wave to the body 
being accelerated is elastic if the body is perfectly conducting and its relative mass is 
less than the critical mass. In this case, the final velocity of the body exceeds by a 
factor of 2 the velocity of the magnetic wave. 

4. The acceleration of a body with finite electrical conductivity by a traveling magnet- 
ic wave has the nature of an inelastic interaction, whose measure is the relative active 
resistance of the body. In this case, the concept of the critical mass of the body, above 
which the entrainment of the body by the magnetic wave terminates, remains meaningful. As 
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the active resistance increases, the critical mass and the final velocity of the body accel- 
erated decrease. 

5. The magnitude of the magnetic field energy transported by the wave, required to ac- 
celerate a body or macroparticle, depends strongly on the maximum attainable value of the 
coupling coefficient between the coils of the accelerating field and the particle (W M 

(k~x--l)mv:/2). 
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